China best China Manufacturer Factory Front End Tipper Trucks Telescopic Hydraulic Cylinder with Good quality

Product Description

Product Description

 Bore of cylinder's first stage    Stroke  Upper mouting Upper mouting Mounting dimension Working pressure 
Diameter of the hole Deep Diameter of the hole Deep
5 84.00  1.63  1.50  2.00  7.00  41.09  2500
6 120.06  2.00  2.00  2.00  7.00  52.62  2500
7 120.00  2.00  2.00  2.00  8.25  53.12  2500
8.125 234.00  2.00  2.00  2.00  9.50  64.62  2500
9.375 235.00  2.00  2.00  2.00  10.88  65.44  2500

 

L2 L3 L4 L5 L6 ØA Fitting Workable container length   Rear suspension length  Lift angle   Lift capacity   Oil tank volume
65 360 60 325 1585 Ø60 G1 4700-5300 800 47-52° 43 80
65 360 60 325 1270 Ø60 G1 4700-5300 800 47-52° 31 80
65 360 60 325 1390 Ø60 G1 5300-6000 800 47-52° 36 80
65 360 60 325 1510 Ø60 G1 5800-6500 800 47-52° 36 80
65 360 60 325 1385 Ø60 G1 5300-5800 800 47-52° 53 80
65 360 60 325 1505 Ø60 G1 5800-6500 800 47-52° 53 100
65 360 60 325 1580 Ø60 G1 6200-6800 800 47-52° 58 100
65 360 60 325 1655 Ø60 G1 6600-7200 800 47-52° 58 100
65 360 60 325 1125 Ø60 G1 5000-5500 800 47-52° 46 80
65 360 60 325 1165 Ø60 G1 5300-6000 800 47-52° 46 80
65 360 60 325 1265 Ø60 G1 5800-6500 800 47-52° 49 80
65 360 60 325 1340 Ø60 G1 6200-6800 800 47-52° 49 80
65 360 60 325 1385 Ø60 G1 6600-7200 800 47-52° 49 80
65 360 65 325 1455 Ø60 G1 5600-6300 800 47-52° 66 120
65 360 65 325 1505 Ø60 G1 5800-6500 800 47-52° 66 120
65 360 65 325 1580 Ø60 G1 6200-6800 800 47-52° 70 120
65 360 65 325 1655 Ø60 G1 6600-7200 800 47-52° 70 120
65 360 65 325 1750 Ø60 G1 7200-8000 1000 47-52° 70 135
65 360 65 325 1270 Ø60 G1 7200-8000 1000 47-52° 49 120
65 360 65 325 1675 Ø65 G1 6600-7200 800 47-52° 92 165
65 360 65 325 1770 Ø65 G1 7200-8000 1000 47-52° 96 165
65 360 65 325 1870 Ø65 G1 8000-8500 1000 47-52° 96 185
65 360 65 325 1770 Ø65 G1 8700-9500 1000 47-52° 88 185

 

Company Profile

 

 

Certifications

 

Packaging & Shipping

FAQ

Q1: Can your cylinders with HYVA ones ?
      Yes, our cylinders can replace HYVA ones well, with same technical details and mounting sizes

Q2: What's your cylinder's advantages ?
      The cylinders are made under strictly quality control processing.
      All the raw materials and seals we used are all from world famous companies.
      Cost effective

Q3: When your company be established ?
      Our company be established in 1996, and we are professional for hydraulic cylinders for more than 25 years.
      And we had passed IATF 16949:2016 Quality control system.

Q4: How about the delivery time ?
       For samples about 20 days. And 15 to 30 days about mass orders.

Q5: How about the cylinder's quality gurantee ?
      We have 1 year quality grantee of the cylinders.
      

Certification: ISO9001, IATF 16949:2016
Pressure: High Pressure
Work Temperature: Normal Temperature
Acting Way: Double Acting
Working Method: Straight Trip
Adjusted Form: Regulated Type
Samples:
US$ 1000/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

hydraulic cylinder

Are there any emerging trends in hydraulic cylinder technology, such as smart features?

Yes, there are several emerging trends in hydraulic cylinder technology, including the integration of smart features. As industries continue to adopt advanced technologies and seek greater efficiency, hydraulic cylinders are being equipped with innovative capabilities to enhance their performance and provide additional benefits. Here are some of the emerging trends in hydraulic cylinder technology:

1. Sensor Integration:

- One of the significant trends in hydraulic cylinder technology is the integration of sensors. Sensors can be embedded within the hydraulic cylinder to monitor various parameters such as pressure, temperature, position, and load. These sensors provide real-time data, allowing for condition monitoring, predictive maintenance, and improved operational control. By collecting and analyzing data, operators can optimize the performance of hydraulic systems, detect potential issues in advance, and prevent failures, resulting in increased reliability and reduced downtime.

2. Connectivity and IoT:

- Hydraulic cylinders are being integrated into the Internet of Things (IoT) ecosystem, enabling connectivity and data exchange. By connecting hydraulic cylinders to a network, operators can remotely monitor and control their performance. IoT-enabled hydraulic cylinders facilitate features such as remote diagnostics, performance optimization, and predictive maintenance. The connectivity aspect allows for better integration with overall equipment systems and enables data-driven decision-making for improved efficiency and productivity.

3. Energy-Efficient Designs:

- With the increasing focus on sustainability and energy efficiency, hydraulic cylinder technology is evolving to incorporate energy-saving features. Manufacturers are developing hydraulic cylinders with improved sealing technologies, reduced friction, and optimized fluid flow dynamics. These advancements minimize energy losses and increase overall system efficiency. Energy-efficient hydraulic cylinders contribute to reduced power consumption, lower operating costs, and a smaller environmental footprint.

4. Advanced Materials and Coatings:

- The use of advanced materials and coatings is another emerging trend in hydraulic cylinder technology. Manufacturers are exploring lightweight materials, such as composites and alloys, to reduce the overall weight of hydraulic cylinders without compromising strength and durability. Furthermore, specialized coatings and surface treatments are being applied to improve corrosion resistance, wear resistance, and lifespan. These advancements enhance the longevity and reliability of hydraulic cylinders, particularly in demanding environments.

5. Intelligent Control Systems:

- Hydraulic cylinder technology is embracing intelligent control systems that optimize performance and enable advanced functionalities. These systems utilize algorithms, machine learning, and artificial intelligence to automate processes, adapt to changing conditions, and optimize hydraulic cylinder movements. Intelligent control systems can adjust parameters in real-time, ensuring precise and efficient operation. This trend allows for increased automation, improved productivity, and enhanced safety in hydraulic system applications.

6. Predictive Maintenance:

- Predictive maintenance is gaining prominence in hydraulic cylinder technology. By utilizing data collected from sensors and monitoring systems, predictive maintenance algorithms can analyze the condition and performance of hydraulic cylinders. This analysis helps to identify potential failures or degradation in advance, enabling proactive maintenance actions. Predictive maintenance reduces unplanned downtime, extends the lifespan of hydraulic cylinders, and optimizes maintenance schedules, resulting in cost savings and improved equipment availability.

7. Enhanced Safety Features:

- Hydraulic cylinder technology is incorporating enhanced safety features to improve operator and equipment safety. These features include integrated safety valves, load monitoring systems, and emergency stop functionalities. Safety systems in hydraulic cylinders help prevent accidents, protect against overloads, and ensure reliable operation. The integration of advanced safety features contributes to safer working environments and compliance with stringent safety regulations.

These emerging trends in hydraulic cylinder technology demonstrate the industry's focus on innovation, performance optimization, and sustainability. The integration of smart features, connectivity, advanced materials, and predictive maintenance capabilities enables hydraulic cylinders to operate more efficiently, provide real-time insights, and enhance overall system performance. As technology continues to advance, hydraulic cylinder technology is expected to evolve further, offering increased functionality and efficiency for various industries and applications.

hydraulic cylinder

Handling Challenges of Different Fluid Viscosities in Hydraulic Cylinders

Hydraulic cylinders are designed to handle the challenges associated with different fluid viscosities. The viscosity of hydraulic fluid can vary based on temperature, type of fluid used, and other factors. Hydraulic systems need to accommodate these variations to ensure optimal performance and efficiency. Let's explore how hydraulic cylinders handle the challenges of different fluid viscosities:

  1. Fluid Selection: Hydraulic cylinders are designed to work with a range of hydraulic fluids, each with its specific viscosity characteristics. The selection of an appropriate fluid with the desired viscosity is crucial to ensure optimal performance. Manufacturers provide guidelines regarding the recommended viscosity range for specific hydraulic systems and cylinders. By choosing the right fluid, hydraulic cylinders can effectively handle the challenges posed by different fluid viscosities.
  2. Viscosity Compensation: Hydraulic systems often incorporate features to compensate for variations in fluid viscosity. For example, some hydraulic systems utilize pressure compensating valves that adjust the flow rate based on the viscosity of the fluid. This compensation ensures consistent performance across different operating conditions and fluid viscosities. Hydraulic cylinders work in conjunction with these compensation mechanisms to maintain precision and control, regardless of the fluid viscosity.
  3. Temperature Control: Fluid viscosity is highly dependent on temperature. Hydraulic cylinders employ various temperature control mechanisms to address the challenges posed by temperature-induced viscosity changes. Heat exchangers, coolers, and thermostatic valves are commonly used to regulate the temperature of the hydraulic fluid within the system. By controlling the fluid temperature, hydraulic cylinders can maintain the desired viscosity range, ensuring reliable and efficient operation.
  4. Efficient Filtration: Contaminants in hydraulic fluid can affect its viscosity and overall performance. Hydraulic systems incorporate efficient filtration systems to remove particles and impurities from the fluid. Clean fluid with the appropriate viscosity ensures optimal functioning of hydraulic cylinders. Regular maintenance and filter replacements are essential to uphold the desired fluid viscosity and prevent issues related to fluid contamination.
  5. Proper Lubrication: Different fluid viscosities can impact the lubrication properties within hydraulic cylinders. Lubrication is essential for minimizing friction and wear between moving parts. Hydraulic systems employ lubricants specifically formulated for the anticipated fluid viscosity range. Adequate lubrication ensures smooth operation and extends the lifespan of hydraulic cylinders, even in the presence of varying fluid viscosities.

In summary, hydraulic cylinders employ various strategies to handle the challenges associated with different fluid viscosities. By selecting appropriate fluids, incorporating viscosity compensation mechanisms, controlling temperature, implementing efficient filtration, and ensuring proper lubrication, hydraulic cylinders can accommodate variations in fluid viscosity. These measures enable hydraulic systems to deliver consistent performance, precise control, and efficient operation across different fluid viscosity ranges.

hydraulic cylinder

How do hydraulic cylinders handle variations in load, pressure, and speed?

Hydraulic cylinders are designed to handle variations in load, pressure, and speed effectively. They incorporate features and components that allow them to adapt to changing operating conditions and maintain optimal performance. Here's a detailed explanation of how hydraulic cylinders handle variations in load, pressure, and speed:

Variations in Load:

- Hydraulic cylinders are capable of handling variations in load by adjusting the force they exert. The force output of a hydraulic cylinder is determined by the hydraulic pressure and the surface area of the piston. When the load increases, the pressure in the hydraulic system can be adjusted to generate a higher force. This adjustment can be achieved by regulating the flow of hydraulic fluid into the cylinder using control valves. By controlling the pressure and flow, hydraulic cylinders can adapt to different load requirements, ensuring that the force applied is sufficient to handle the load while preventing excessive force that could cause damage.

Variations in Pressure:

- Hydraulic cylinders are designed to handle variations in pressure within the hydraulic system. They are equipped with seals and other components that can withstand high-pressure conditions. When the pressure within the hydraulic system fluctuates, the hydraulic cylinder adjusts accordingly to maintain its performance. The seals prevent fluid leakage and ensure that the hydraulic pressure is effectively transmitted to the piston, allowing the cylinder to generate the required force. Additionally, hydraulic systems often incorporate pressure relief valves and other safety mechanisms to protect the cylinder and the entire system from overpressure conditions.

Variations in Speed:

- Hydraulic cylinders can handle variations in speed through the control of hydraulic fluid flow. The speed of a hydraulic cylinder's extension or retraction is determined by the rate at which hydraulic fluid enters or exits the cylinder. By adjusting the flow rate using flow control valves, the speed of the cylinder's movement can be regulated. This allows for precise control over the speed, enabling operators to adapt to varying speed requirements based on the specific task or load. Furthermore, hydraulic systems can incorporate flow control valves with adjustable orifice sizes to fine-tune the speed of the cylinder's movement.

Load-Sensing Technology:

- Advanced hydraulic systems may incorporate load-sensing technology to further enhance the ability of hydraulic cylinders to handle variations in load, pressure, and speed. Load-sensing systems monitor the load demand and adjust the hydraulic pressure and flow accordingly to meet that demand. This technology ensures that the hydraulic cylinder provides the necessary force while optimizing energy efficiency. Load-sensing systems are particularly beneficial in applications where the load requirements can vary significantly, allowing hydraulic cylinders to adapt in real-time and maintain precise control over force and speed.

Accumulators:

- Hydraulic systems can also utilize accumulators to assist in handling variations in load, pressure, and speed. Accumulators store hydraulic fluid under pressure, which can be released when needed to supplement the flow and pressure in the system. When there are sudden increases in load or pressure demands, accumulators can provide additional fluid to the hydraulic cylinder, ensuring smooth operation and preventing pressure drops. Similarly, accumulators can assist in maintaining consistent speed by compensating for fluctuations in flow rate. They act as a supplemental energy source, helping hydraulic cylinders respond effectively to variations in operating conditions.

In summary, hydraulic cylinders handle variations in load, pressure, and speed through various mechanisms and components. They can adjust the force output to accommodate different load requirements by regulating hydraulic pressure. The seals and components within hydraulic cylinders allow them to withstand variations in pressure within the hydraulic system. By controlling the flow of hydraulic fluid, hydraulic cylinders can regulate the speed of their movement. Advanced technologies such as load-sensing systems and the use of accumulators further enhance the adaptability of hydraulic cylinders to changing operating conditions. These features and mechanisms enable hydraulic cylinders to maintain optimal performance and provide reliable force and motion control in a wide range of applications.

China best China Manufacturer Factory Front End Tipper Trucks Telescopic Hydraulic Cylinder   with Good quality China best China Manufacturer Factory Front End Tipper Trucks Telescopic Hydraulic Cylinder   with Good quality
editor by CX 2023-11-15